By Topic

Low-Frequency Noise in Enhancement-Mode GaN MOS-HEMTs by Using Stacked \hbox {Al}_{2}\hbox {O}_{3}/\hbox {Ga}_{2}\hbox {O}_{3}/\hbox {Gd}_{2}\hbox {O}_{3} Gate Dielectric

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chiu, Hsien-Chin ; Dept. of Electron. Eng., Chang Gung Univ., Taoyuan, Taiwan ; Jia-Hsuan Wu ; Chih-Wei Yang ; Fan-Hsiu Huang
more authors

In this letter, enhancement-mode AlGaN/GaN metal-oxide semiconductor high-electron-mobility transistors (HEMT) (MOS-HEMTs) are realized by using N2O plasma oxidation and Gd2O3 stacked-gate dielectric technologies. Before the gate metal was deposited, the AlGaN barrier layer was treated by 150-W N2O plasma for 200 s to remove the AlGaN native oxide layer and, simultaneously, to form Al2O3/ Ga2O3 compound insulator. Then, a 10-nm-thick high-dielectric-constant Gd2O3 thin film was electron-beam evaporated as a stacked-gate dielectric. To elucidate the interface phenomena of the device, the dependence of the 1/f noise spectra on the gate bias was studied. The fluctuation that is caused by trapping/detrapping of free channel carriers near the gate interface can be reduced by N2O plasma treatment. Additionally, the variation of the Hooge factor (αH) of a traditional metal gate GaN HEMT, measured at 77 K and 300 K, is huge, particularly in the subthreshold gate voltage regime. The tunneling leakage current that is induced by the interface traps is determined to be higher than that in the MOS-HEMT design. The threshold voltage (Vth) of depletion-mode GaN HEMT was -3.15 V, and this value can be shifted to +0.6 using N2O-treated stacked-gate AlGaN/GaN MOS-HEMTs.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 7 )