Cart (Loading....) | Create Account
Close category search window

Ultrahigh Resolution Multiplexed Fiber Bragg Grating Sensor for Crustal Strain Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
Liu, Q. ; Dept. of Electr. Eng. & Inf. Syst., Univ. of Tokyo, Tokyo, Japan ; Tokunaga, T. ; Mogi, K. ; Matsui, H.
more authors

We demonstrated a multiplexed fiber Bragg grating (FBG) sensor with static strain resolution of 10 nanostrain (nε) for crustal strain monitoring. Each sensor unit consists of a pair of identical FBGs for strain sensing and reference, respectively. A narrow linewidth tunable laser is used to interrogate the FBGs, and a cross-correlation algorithm is incorporated to demodulate the wavelength difference induced by strain. When no strain is applied, an ultrahigh wavelength precision corresponding to strain resolution of 3.3 nε was obtained, indicating the ultimate resolution of the sensor system. With a variable strain applied by a piezo-stage, strain resolution of 17.6 nε was demonstrated. When the sensor is adopted for the in situ monitoring of crustal deformation, the strain induced by oceanic tide is clearly recorded with a resolution of 10 nε, providing a potential tool for the geophysical measurements.

Published in:

Photonics Journal, IEEE  (Volume:4 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.