By Topic

Integrating Power Systems, Transport Systems and Vehicle Technology for Electric Mobility Impact Assessment and Efficient Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Galus, Matthias D. ; Power Syst. Lab. (PSL), ETH Zurich, Zurich, Switzerland ; Waraich, R.A. ; Noembrini, F. ; Steurs, K.
more authors

Electric mobility is considered as a promising option for future individual transportation in terms of lower CO2-emissions and reduced dependence on fossil fuels. In order to analyze its impacts effectively, an agent based model is proposed. It integrates three domains which are mainly affected by electric mobility. Vehicle fleet evolution and vehicle energy demand simulations are combined with a transportation simulation, thus determining the daily behavior of electric vehicles and providing individual battery energy levels at the different locations of the vehicles during the day. Further, a power system model combined with a charging control algorithm is included in order to study general effects in electricity networks and to provide insights into new electric vehicle load patterns, as well as into changes in transport behavior. It is shown that network congestion can be mitigated using control signals. The paper describes the method and the integration of the three different domains and shows results of the integrated analysis tool.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 2 )