Cart (Loading....) | Create Account
Close category search window
 

An Electrostatically Actuated Stacked-Electrode MEMS Relay With a Levering and Torsional Spring for Power Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong-Ha Song ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Chang-Hoon Han ; Min-Wu Kim ; Jeong Oen Lee
more authors

This paper reports on a novel electrostatically actuated microelectromechanical systems (MEMS) relay for use in power-switching applications. It features a levering and torsional spring to enhance the stand-off voltage and contact endurance by means of an active-opening scheme. The proposed relay is based on a unique stacked-electrode structure and a soft insulating layer under the contact material that make it possible to obtain extremely low contact resistance, resulting in high current driving capability and reliable contact endurance. The fabricated relay demonstrated actuation voltages under 40 V, a switching time of 230 μs, and a maximum stand-off voltage of 360 V, which is the highest level among electrostatically actuated MEMS relays reported to date. The contact resistance was under 5 mΩ at 40 V of applied voltage, and more than 1 A could be carried. The contact reliability in a hot-switching condition was investigated for various dc current levels. At a current of 10 mA, the relay operated for more than 107 cycles before the test was stopped. In addition, the permanent contact stiction during switching operation at a 200-mA current level was overcome with a pull-off (active-opening) voltage of 90 V by the levering and torsional spring. Using this healing process, a device that failed at about 104 switching cycles in the 200-mA hot-switching mode was revived and reoperated with negligible contact resistance variation, lasting up to 4.9 ×105 cycles, constituting an order-of-magnitude enhancement in the lifetime even after failure.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 5 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.