By Topic

Wide-Area Damping Control of Power Systems Using Dynamic Clustering and TCSC-Based Redesigns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chakrabortty, A. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA

In this paper we present a FACTS (Flexible AC Transmission Systems)-based control design for electromechanical oscillation damping in large power systems, facilitated by aggregate models that can be constructed using Synchronized phasor measurements. Our approach consists of three steps, namely-1. Model Reduction, where Synchrophasors are used to identify second-order models of the oscillation clusters of the power system retaining the inter-ties on which FACTS devices such as Thyristor Controlled Series Compensators (TCSC) are installed, 2. Aggregate Control, where feedback controllers are designed to achieve a desired closed-loop transient response between every pair of clusters, and finally 3. Control Inversion, where the aggregate control design is distributed and tuned to actual TCSC controllers in the full-order model until its inter-area responses match the respective inter-machine responses of the reduced-order system. It is shown that the inversion problem can be posed equivalently as decomposing the swing dynamics into fast and slow states, and designing the controllers such that the slow dynamics can optimally track a desired closed-loop signal designed for the aggregate model. Application of the approach to two-area power systems is demonstrated through topological examples inspired by the US west coast grid.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 3 )