Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Measurement of the Offset-Cassegrain Antenna of JEM/SMILES Using a Near-Field Phase-Retrieval Method in the 640-GHz Band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Manabe, T. ; Dept. of Aerosp. Eng., Osaka Prefecture Univ., Sakai, Japan ; Nishibori, T. ; Mizukoshi, K. ; Otsubo, F.
more authors

This communication describes the results of the measurements made for the flight model of the offset Cassegrain antenna of superconducting submillimeter-wave limb-emission sounder (SMILES) aboard the International Space Station. We have employed a near-field phase retrieval method in which the aperture phase distribution is estimated only from the amplitude distribution measurements over two near-field planes. The far-field patterns estimated from the estimated near-field patterns were compared with theoretical calculations based on physical optics in which the surface errors measured for the main and sub reflectors were taken into account. As a result of the comparison, the far-field patterns estimated from the phase retrieval method were found to be in very good agreement with the physical-optics calculations to the sidelobe levels as low as -55 dB. We have also found that patterns of machined flaws on the surface of the main reflector were clearly identified in the retrieved near-field phase pattern. This demonstrates that the phase retrieval is an effective method to evaluate aperture antennas in the submillimeter-wave region, where accurate phase measurement is rather difficult.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 8 )