By Topic

Matching parameter estimation by using the radial basis function interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fuji, Y. ; Grad. Sch. of Eng. Sci., Osaka Univ., Toyonaka, Japan ; Abe, Y. ; Iiguni, Y.

A matching parameter estimation method with subpixel accuracy is derived by using the radial basis function (RBF) interpolation. This method reconstructs two analogue images from two given digital images by the RBF, and then minimises a non-linear cost function by the steepest-descent algorithm to estimate translation, rotation, scaling factor and intensity change between the two analogue images. The RBF provides accurate interpolation, resulting in accurate estimation. A Gaussian weighting function is introduced into the cost function to provide a local estimate within a region of interest (ROC). Then double integrals included in the cost function are analytically computed and the computational complexity is significantly reduced by exploiting the property that the Gaussian function decays rapidly. When the matching parameters are not constant over the whole image, or equivalently, the ROC is set to be small, the proposed method is better than the conventional phase correlation method in estimation accuracy.

Published in:

Image Processing, IET  (Volume:6 ,  Issue: 4 )