By Topic

Design of 32nm Forced Stack CNTFET SRAM cell for leakage power reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajendra Prasad, S. ; Dept. of ECE, ACE Eng. Coll., Hyderabad, India ; Madhavi, B.K. ; Lal Kishore, K.

As silicon semiconductor device feature size scales down to the nanometer range, planar bulk CMOS design and fabrication encounter significant challenges nowadays. Carbon Nanotube Field Effect Transistor (CNTFET) has been introduced for high stability, high performance and low power SRAM cell design as an alternative material. Technology scaling demands a decrease in both VDD and VT to sustain historical delay reduction, while restraining active power dissipation. Scaling of VT however leads to substantial increase in the sub-threshold leakage power and is expected to become a considerable constituent of the total dissipated power. It has been observed that the stacking of two off devices has smaller leakage current than one off device. This paper proposes a SRAM cell circuit based on CNTFET that uses Forced Stack Technique to reduce leakage power. The advantage of this circuit compared to sleep-transistor technique is that it can save the state. This circuit is simulated using HSPICE with Stanford CNFET model at 32nm. The simulated results shows that this proposed Forced Stack CNTFET SRAM cell reduces a leakage-power by a significant amount compared to conventional 6T CNTFET SRAM cell with minimal Area and delay trade off.

Published in:

Computing, Electronics and Electrical Technologies (ICCEET), 2012 International Conference on

Date of Conference:

21-22 March 2012