By Topic

Spectral Unmixing Cluster Validity Index for Multiple Sets of Endmembers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Derek T. Anderson ; Department of Electrical and Computer Engineering, Mississippi State University, MS, USA ; Alina Zare

A hyperspectral pixel is generally composed of a relatively small number of endmembers. Several unmixing methods have been developed to enforce this concept through sparsity promotion or piece-wise convex mixing models. Piece-wise convex unmixing methods often require as parameters the number of endmembers and the number of sets of endmembers needed. However, these values are often unknown in advance and difficult to estimate. In this article, a new cluster validity index for multiple sets of endmembers is developed. The proposed index is used to evaluate spectral unmixing results and identify optimal parameter sets for piece-wise convex unmixing methods. No other conventional cluster validity index is directly applicable or theoretically well-suited for the piece-wise convex model. Specifically, we focus on addressing cases in which endmembers may or may not be located in a dense region of the data. Additionally, we focus on cases in which hyperspectral data is well distributed within a convex cluster (not exhibiting significant holes or gaps). The proposed validity index is applied to both simulated and real hyperspectral data. Results show that the proposed method consistently selects the best parameter set.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:5 ,  Issue: 4 )