By Topic

A Particle Filtering Scheme for Processing Time Series Corrupted by Outliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cristina S. Maiz ; Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Spain ; Elisa M. Molanes-Lopez ; Joaquín Miguez ; Petar M. Djuric

The literature in engineering and statistics is abounding in techniques for detecting and properly processing anomalous observations in the data. Most of these techniques have been developed in the framework of static models and it is only in recent years that we have seen attempts that address the presence of outliers in nonlinear time series. For a target tracking problem described by a nonlinear state-space model, we propose the online detection of outliers by including an outlier detection step within the standard particle filtering algorithm. The outlier detection step is implemented by a test involving a statistic of the predictive distribution of the observations, such as a concentration measure or an extreme upper quantile. We also provide asymptotic results about the convergence of the particle approximations of the predictive distribution (and its statistics) and assess the performance of the resulting algorithms by computer simulations of target tracking problems with signal power observations.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 9 )