By Topic

Performance Comparisons of Contour-Based Corner Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Awrangjeb, M. ; Department of Infrastructure Engineering, Cooperative Research Centre for Spatial Information, University of Melbourne, Melbourne, Australia ; Guojun Lu ; Fraser, C.S.

Corner detectors have many applications in computer vision and image identification and retrieval. Contour-based corner detectors directly or indirectly estimate a significance measure (e.g., curvature) on the points of a planar curve, and select the curvature extrema points as corners. While an extensive number of contour-based corner detectors have been proposed over the last four decades, there is no comparative study of recently proposed detectors. This paper is an attempt to fill this gap. The general framework of contour-based corner detection is presented, and two major issues—curve smoothing and curvature estimation, which have major impacts on the corner detection performance, are discussed. A number of promising detectors are compared using both automatic and manual evaluation systems on two large datasets. It is observed that while the detectors using indirect curvature estimation techniques are more robust, the detectors using direct curvature estimation techniques are faster.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 9 )