By Topic

Experimental Results in DBD Plasma Actuators for Air Flow Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gabriele Neretti ; Department of Electrical Engineering, University of Bologna, Bologna , Italy ; Andrea Cristofolini ; Carlo A. Borghi ; Alessandro Gurioli
more authors

In this paper, several planar dielectric barrier discharge fluid-dynamics actuators have been experimentally investigated. The actuator is made by an electrode pair separated by a dielectric. It is characterized by a planar geometry, and it induces a volume force on the gas above it which modifies the fluid dynamics within the aerodynamic boundary layer. Several actuator geometries, dielectric materials, ac supply voltages, and supply frequencies have been used. Rotational and vibrational temperatures have been determined by means of spectroscopic measurements. Vibrational temperatures have been found to be one order of magnitude higher than the rotational ones, confirming the nonthermal behavior of the discharge. The translational temperature has been evaluated by thermographic observations of the dielectric surface heated by the plasma. The values of the translational temperature are in a very good agreement with those of the rotational temperature. Electric measurements have been carried out to determine the average power delivered to the discharge and to estimate the average electron number density. In the plasma induced by the discharge above the actuator, an average electron density of has been determined. The gas speed of the induced wall jet has been measured with a Pitot tube. The average power delivered to the electrodes increases with a power law of the applied voltage and linearly with the supply frequency. The induced speed increases with the increase of the average power until a plateau is reached. The efficiencies of the different actuators have been compared by evaluating the relation between average power and induced gas speed.

Published in:

IEEE Transactions on Plasma Science  (Volume:40 ,  Issue: 6 )