By Topic

Energy-Efficient Cooperative Video Distribution with Statistical QoS Provisions over Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khalek, A.A. ; Dept. of Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Dawy, Z.

For real-time video broadcast where multiple users are interested in the same content, mobile-to-mobile cooperation can be utilized to improve delivery efficiency and reduce network utilization. Under such cooperation, however, real-time video transmission requires end-to-end delay bounds. Due to the inherently stochastic nature of wireless fading channels, deterministic delay bounds are prohibitively difficult to guarantee. For a scalable video structure, an alternative is to provide statistical guarantees using the concept of effective capacity/bandwidth by deriving quality of service exponents for each video layer. Using this concept, we formulate the resource allocation problem for general multihop multicast network flows and derive the optimal solution that minimizes the total energy consumption while guaranteeing a statistical end-to-end delay bound on each network path. A method is described to compute the optimal resource allocation at each node in a distributed fashion. Furthermore, we propose low complexity approximation algorithms for energy-efficient flow selection from the set of directed acyclic graphs forming the candidate network flows. The flow selection and resource allocation process is adapted for each video frame according to the channel conditions on the network links. Considering different network topologies, results demonstrate that the proposed resource allocation and flow selection algorithms provide notable performance gains with small optimality gaps at a low computational cost.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:11 ,  Issue: 7 )