By Topic

Resonant Hydrophones Based on Coated Fiber Bragg Gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Moccia, M. ; Optoelectronic Division, Department of Engineering, University of Sannio, Benevento, Italy ; Consales, M. ; Iadicicco, A. ; Pisco, M.
more authors

In this paper, we report on recent experimental results obtained with fiber-Bragg-grating (FBG) hydrophones for underwater acoustic detection. The optical hydrophones under investigation consist of FBGs coated with ring-shaped polymers of different size and mechanical properties. The coating materials were selected and designed in order to provide mechanical amplification, via judicious choice of their acousto-mechanical properties and by exploiting selected resonances occurring in different frequency ranges. Our underwater acoustic measurements, carried out within the range 4–35 kHz, reveal the resonant behavior of these optical hydrophones, as well as its dependence on the coating size and type of material. These experimental data are also in good agreement with our previously published numerical results. By comparison with bare (i.e., uncoated) FBGs, responsivity enhancements of up to three orders of magnitude were found, demonstrating the effectiveness of polymeric coatings in tailoring the acoustic response of FBG-based hydrophones.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 15 )