By Topic

On the Relation Between Stored Energy and Fabrication Tolerances in Microwave Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Martinez-Mendoza, M. ; Inst. de Telecomun. y Aplic. Multimedia (iTEAM), Univ. Politec. de Valencia, Valencia, Spain ; Ernst, C. ; Lorente, J.A. ; Alvarez-Melcon, A.
more authors

In this paper, a new approach for the sensitivity analysis of microwave filter networks is presented. It is shown that the standard method of sensitivity calculation based on a tuned filter is only valid for infinitesimal geometry changes and not meaningful for practical tolerance values. However, when the sensitivity calculation is expanded to also include sensitivities of detuned filters, it is shown that accurate tolerance predictions can be made even for large geometry variations. It is found that sensitivities can be related to the stored energy distribution in the filter. Transversal and ladder network-type topologies are examined, and it is demonstrated for the first time that, for in-line topologies, sensitivity can be predicted directly from the group delay of the filter in Chebyshev filters. In order to demonstrate the usefulness of the results obtained, the maximum degradation of the in-band performance has been directly obtained from the group delay for different inline filters.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 7 )