By Topic

Classification of Hyperspectral Data Over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wenzhi Liao ; Dept. of Telecommun. & Inf. Process., Ghent Univ., Ghent, Belgium ; Bellens, R. ; Pizurica, A. ; Philips, W.
more authors

When using morphological features for the classification of high resolution hyperspectral images from urban areas, one should consider two important issues. The first one is that classical morphological openings and closings degrade the object boundaries and deform the object shapes. Morphological openings and closings by reconstruction can avoid this problem, but this process leads to some undesirable effects. Objects expected to disappear at a certain scale remain present when using morphological openings and closings by reconstruction. The second one is that the morphological profiles (MPs) with different structuring elements and a range of increasing sizes of morphological operators produce high-dimensional data. These high-dimensional data may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. In this paper, we first investigate morphological profiles with partial reconstruction and directional MPs for the classification of high resolution hyperspectral images from urban areas. Secondly, we develop a semi-supervised feature extraction to reduce the dimensionality of the generated morphological profiles for the classification. Experimental results on real urban hyperspectral images demonstrate the efficiency of the considered techniques.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 4 )