Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Particle Filtering Approaches for Multiple Acoustic Source Detection and 2-D Direction of Arrival Estimation Using a Single Acoustic Vector Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xionghu Zhong ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Premkumar, A.B.

This paper considers the problem of tracking multiple acoustic sources using a single acoustic vector sensor (AVS). Firstly, a particle filtering (PF) approach is developed to track the direction of arrivals of fixed and known number of sources. Secondly, a more realistic tracking scenario which assumes that the number of acoustic sources is unknown and time-varying is considered. A random finite set (RFS) framework is employed to characterize the randomness of the state process, i.e., the dynamics of source motion and the number of active sources, as well as the measurement process. As deriving a closed-form solution for the multi-source probability density is difficult, a particle filtering approach is employed to arrive at a computationally tractable approximation of the RFS densities. The proposed RFS-PF algorithm is able to simultaneously detect and track multiple sources. Simulations under different tracking scenarios demonstrate the ability of the proposed approaches in tracking multiple acoustic sources.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 9 )