By Topic

Neural-Network-Based Decentralized Adaptive Output-Feedback Control for Large-Scale Stochastic Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qi Zhou ; Intelligent Systems and Biomedical Robotics Group, School of Creative Technologies, University of Portsmouth, Portsmouth, U.K. ; Peng Shi ; Honghai Liu ; Shengyuan Xu

This paper focuses on the problem of neural-network-based decentralized adaptive output-feedback control for a class of nonlinear strict-feedback large-scale stochastic systems. The dynamic surface control technique is used to avoid the explosion of computational complexity in the backstepping design process. A novel direct adaptive neural network approximation method is proposed to approximate the unknown and desired control input signals instead of the unknown nonlinear functions. It is shown that the designed controller can guarantee all the signals in the closed-loop system to be semiglobally uniformly ultimately bounded in a mean square. Simulation results are provided to demonstrate the effectiveness of the developed control design approach.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 6 )