By Topic

Gammatone Cepstral Coefficients: Biologically Inspired Features for Non-Speech Audio Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xavier Valero ; GTM-Grup de Recerca en Tecnologies Media, La Salle-Univ. Ramon Llull, Barcelona, Spain ; Francesc Alias

In the context of non-speech audio recognition and classification for multimedia applications, it becomes essential to have a set of features able to accurately represent and discriminate among audio signals. Mel frequency cepstral coefficients (MFCC) have become a de facto standard for audio parameterization. Taking as a basis the MFCC computation scheme, the Gammatone cepstral coefficients (GTCCs) are a biologically inspired modification employing Gammatone filters with equivalent rectangular bandwidth bands. In this letter, the GTCCs, which have been previously employed in the field of speech research, are adapted for non-speech audio classification purposes. Their performance is evaluated on two audio corpora of 4 h each (general sounds and audio scenes), following two cross-validation schemes and four machine learning methods. According to the results, classification accuracies are significantly higher when employing GTCC rather than other state-of-the-art audio features. As a detailed analysis shows, with a similar computational cost, the GTCC are more effective than MFCC in representing the spectral characteristics of non-speech audio signals, especially at low frequencies.

Published in:

IEEE Transactions on Multimedia  (Volume:14 ,  Issue: 6 )