Cart (Loading....) | Create Account
Close category search window
 

To Transmit or Not to Transmit: A Discrete Event-Triggered Communication Scheme for Networked Takagi–Sugeno Fuzzy Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen Peng ; Centre for Intell. & Networked Syst., Central Queensland Univ., Rockhampton, QLD, Australia ; Qing-Long Han ; Dong Yue

This paper first proposes a discrete event-triggered communication scheme for a class of networked Takagi-Sugeno (T-S) fuzzy systems. This scheme has two main features: 1) Whether or not the sampled state should be transmitted is determined by the current-sampled state and the error between the current-sampled state and the latest transmitted state. Compared with those in a periodic time-triggered communication scheme, the communication bandwidth utilization is considerably reduced while preserving the desired control performance; and 2) it is a discrete event-triggered communication scheme due to the fact that the triggered conditions are only measured and checked at a constant sampling period. Compared with a continuous event-triggered communication scheme, the special hardware for continuous measurement and computation is no longer needed. Second, a networked T-S fuzzy model is delicately constructed, which not only considers nonuniform time scales in the networked T-S fuzzy model and the parallel distributed compensation fuzzy control rules but includes the aforementioned state error as well. Third, a stability criterion and a stabilization criterion about the networked T-S fuzzy system are derived, respectively. The stability criterion and stabilization criterion can provide a tradeoff to balance the required communication resource and the desired performance: Lowering the desired performance allows the network to allocate more limited bandwidth to other nodes in need. Finally, a numerical example is given to show the effectiveness of the proposed method.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.