By Topic

An Incremental Learning Method Based on Probabilistic Neural Networks and Adjustable Fuzzy Clustering for Human Activity Recognition by Using Wearable Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhelong Wang ; Sch. of Control Sci. & Eng., Dalian Univ. of Technol., Dalian, China ; Ming Jiang ; Yaohua Hu ; Hongyi Li

Human activity recognition by using wearable sensors has gained tremendous interest in recent years among a range of health-related areas. To automatically recognize various human activities from wearable sensor data, many classification methods have been tried in prior studies, but most of them lack the incremental learning abilities. In this study, an incremental learning method is proposed for sensor-based human activity recognition. The proposed method is designed based on probabilistic neural networks and an adjustable fuzzy clustering algorithm. The proposed method may achieve the following features. 1) It can easily learn additional information from new training data to improve the recognition accuracy. 2) It can freely add new activities to be detected, as well as remove existing activities. 3) The updating process from new training data does not require previously used training data. An experiment was performed to collect realistic wearable sensor data from a range of activities of daily life. The experimental results showed that the proposed method achieved a good tradeoff between incremental learning ability and the recognition accuracy. The experimental results from comparison with other classification methods demonstrated the effectiveness of the proposed method further.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 4 )