By Topic

The Degrees of Freedom of Compute-and-Forward

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Niesen, U. ; Math. of Networks & Commun. Res. Dept., Alcatel-Lucent Bell Labs., Murray Hill, NJ, USA ; Whiting, P.

We analyze the asymptotic behavior of compute-and-forward relay networks in the regime of high signal-to-noise ratios. We consider a section of such a network consisting of K transmitters and K relays. The aim of the relays is to reliably decode an invertible function of the messages sent by the transmitters. An upper bound on the capacity of this system can be obtained by allowing full cooperation among the transmitters and among the relays, transforming the network into a K × K multiple-input multiple-output (MIMO) channel. The number of degrees of freedom of compute-and-forward is hence at most K. In this paper, we analyze the degrees of freedom achieved by the lattice coding implementation of compute-and-forward proposed recently by Nazer and Gastpar. We show that this lattice implementation achieves at most 2/(1+1/K) ≤ 2 degrees of freedom, thus exhibiting a very different asymptotic behavior than the MIMO upper bound. This raises the question if this gap of the lattice implementation to the MIMO upper bound is inherent to compute-and-forward in general. We answer this question in the negative by proposing a novel compute-and-forward implementation achieving K degrees of freedom.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 8 )