By Topic

Stochastic similarity for validating human control strategy models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. C. Nechyba ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Yangsheng Xu

Modeling dynamic human control strategy (HCS), or human skill through learning is becoming an increasingly popular paradigm in many different research areas, such as intelligent vehicle systems, virtual reality, and space robotics. Validating the fidelity of such models requires that we compare the dynamic trajectories generated by the HCS model in the control feedback loop to the original human control data. To this end we have developed a stochastic similarity measure-based on hidden Markov model (HMM) analysis-capable of comparing dynamic, multi-dimensional trajectories. In this paper, we first derive and demonstrate properties of the proposed similarity measure for stochastic systems. We then apply the similarity measure to real-time human driving data by comparing different control strategies for different individuals. Finally, we show that the similarity measure outperforms the more traditional Bayes classifier in correctly grouping driving data from the same individual

Published in:

Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on  (Volume:1 )

Date of Conference:

20-25 Apr 1997