By Topic

HORNET: A Cycle-Level Multicore Simulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Pengju Ren ; Xi'an Jiaotong University, Xi'an, China ; Mieszko Lis ; Myong Hyon Cho ; Keun Sup Shim
more authors

We present hornet, a parallel, highly configurable, cycle-level multicore simulator based on an ingress-queued wormhole router network-on-chip (NoC) architecture. The parallel simulation engine offers cycle-accurate as well as periodic synchronization; while preserving functional accuracy, this permits tradeoffs between perfect timing accuracy and high speed with very good accuracy. When run on six separate physical cores on a single die, speedups can exceed a factor of over 5, and when run on a two-die 12-core system with 2-way hyperthreading, speedups exceed 12×. Most hardware parameters are configurable, including memory hierarchy, interconnect geometry, bandwidth, crossbar dimensions, parameters driving power, and thermal effects. A highly parametrized table-based NoC design allows a variety of routing and virtual channel allocation algorithms out of the box, ranging from simple dimension-ordered routing to complex Valiant, ROMM, O1Turn or PROM schemes, BSOR, and adaptive routing. Hornet can run in network-only mode using synthetic traffic or traces, or directly emulate a MIPS-based multicore. Hornet is freely available under the open-source MIT license at

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:31 ,  Issue: 6 )