By Topic

Test Signal Development and Analysis for OFDM Systems RF Front-End Parameter Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nassery, A. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Erol, O.E. ; Ozev, S. ; Verhelst, M.

Testing radio frequency (RF) transceivers requires the measurement of a diverse set of specifications, requiring multiple testing setups. This complicates load board design, debug, and diagnosis, as well as results in long testing time. In this paper, we present a single setup testing solution for orthogonal frequency-division multiplexing systems RF front-ends based on a loop-around scheme. With this technique, it is possible to determine gain and phase mismatch, inphase-quadrature time skew, and dc offset. Linear gain and IIP3 decouple the transmitter parameters from the receiver parameters. Although loop-around has been used in many forms, the basic challenge is to determine what input conditions will lead to accurate measurement and what form of modeling will yield this accuracy. To this end, we develop test signal design and multistep extraction techniques. Experimental results indicate that IIP3 can be extracted with 0.6 dB maximum error while phase mismatch and gain mismatch can be extracted with 0.3° and 0.6% maximum error. Our method is able to de-embed the characteristics of transmitter from those of receiver while it requires the analysis of only low-frequency digital baseband signals (I and Q branches) and eliminates the need for RF testers.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 6 )