By Topic

Cost-Efficient Built-In Redundancy Analysis With Optimal Repair Rate for RAMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ting-Ju Chen ; Realtek Semicond. Corp., Hsinchu, Taiwan ; Jin-Fu Li ; Tsu-Wei Tseng

Built-in self-repair (BISR) techniques are widely used for the repair of embedded memories. One of the key components of a BISR circuit is the built-in redundancy-analysis (BIRA) module, which allocates redundancies according to the designed redundancy analysis algorithm. Thus, the BIRA module affects the repair rate of the BISR circuit. Existing BIRA schemes for RAMs can provide the optimal repair rate (the ratio of the number of repaired RAMs to the number of defective RAMs), but they require either high area cost or multiple test runs. This paper proposes a BIRA scheme for RAMs, which can provide the optimal repair rate using very low area cost and single test run. Furthermore, the BIRA is designed as reconfigurable such that it can be shared by multiple RAMs. Experimental results show that the area cost for implementing the proposed BIRA scheme is much lower than that of existing BIRA schemes with optimal repair rate. A test chip is also implemented to demonstrate the proposed BIRA scheme.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 6 )