By Topic

Damping of Low Frequency Oscillations of Multi-Machine Multi-UPFC Power Systems, Based on Adaptive Input-Output Feedback Linearization Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shahrokh Shojaeian ; Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran ; Jafar Soltani ; Gholamreza Arab Markadeh

In this paper, damping of the low frequency oscillations of multi-machine multi-UPFC power systems is investigated based on adaptive input-output feedback linearization control (AIFLC) approach. Considering a three-phase symmetrical fault, ignoring the subtransient states of the synchronous machines, the nonlinear state equations of the system are derived in order to obtain the UPFC reference control signals as well as the system parameters estimation laws. The stability of the system controller is proved by Lyapunov theory. Moreover using the six reduced order model of synchronous machine, some simulation results are presented in order to verify the validity and effectiveness of the proposed control approach.

Published in:

IEEE Transactions on Power Systems  (Volume:27 ,  Issue: 4 )