By Topic

Novel MIMO Detection Algorithm for High-Order Constellations in the Complex Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mojtaba Mahdavi ; Electrical Engineering Department, Sharif University of Technology, Tehran, Iran ; Mahdi Shabany

A novel detection algorithm with an efficient VLSI architecture featuring efficient operation over infinite complex lattices is proposed. The proposed design results in the highest throughput, the lowest latency, and the lowest energy compared to the complex-domain VLSI implementations to date. The main innovations are a novel complex-domain means of expanding/visiting the intermediate nodes of the search tree on demand, rather than exhaustively, as well as a new distributed sorting scheme to keep track of the best candidates at each search phase. Its support of unbounded infinite lattice decoding distinguishes the present method from previous K-Best strategies and also allows its complexity to scale sublinearly with the modulation order. Since the expansion and sorting cores are data-driven, the architecture is well suited for a pipelined parallel VLSI implementation. The proposed algorithm is used to fabricate a 4×4, 64-QAM complex multiple-input-multiple-output detector in a 0.13-μm CMOS technology, achieving a clock rate of 417 MHz with the core area of 340 kgates. The chip test results prove that the fabricated design can sustain a throughput of 1 Gb/s with energy efficiency of 110 pJ/bit, the best numbers reported to date.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:21 ,  Issue: 5 )