By Topic

Three-Dimensional Numerical Simulation of a 30-GHz Gyrotron Resonator With an Explicit High-Order Discontinuous-Galerkin-Based Parallel Particle-In-Cell Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Stock, A. ; Inst. of Aerodynamics & Gas Dynamics, Univ. of Stuttgart, Stuttgart, Germany ; Neudorfer, J. ; Riedlinger, M. ; Pirrung, G.
more authors

Fast design codes for the simulation of the particle-field interaction in the interior of gyrotron resonators are available. They procure their rapidity by making strong physical simplifications and approximations, which are not known to be valid for many variations of the geometry and the operating setup. For the first time, we apply a fully electromagnetic (EM) transient 3-D high-order discontinuous Galerkin particle-in-cell method solving the complete self-consistent nonlinear Vlasov-Maxwell equations to simulate a 30-GHz high-power millimeter-wave gyrotron resonator without physical reductions. This is a computational expensive endeavor, which requires today's high-performance computing capacity. However, this enables a detailed analysis of the EM field, the excited TE2,3 mode, the frequencies, and the azimuthal particle bunching in the beam. Therefrom, we present new insights into the complex particle-field interaction of the electron cyclotron maser instability transferring kinetic energy from the electron beam to the EM field.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 7 )