By Topic

Hysteresis-Controller-Based Energy Harvesting Scheme for Microbial Fuel Cells With Parallel Operation Capability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jae-Do Park ; Dept. of Electr. Eng., Univ. of Colorado Denver, Denver, CO, USA ; Zhiyong Ren

Microbial fuel cell (MFC) is an emerging technology for sustainable energy production. An MFC employs indigenous microorganisms as biocatalysts and can theoretically convert any biodegradable substrate into electricity, making the technology a viable solution for sustainable waste treatment or autonomous power supply. However, the electric energy currently generated from MFCs is not directly usable due to the low voltage and current output. Moreover, the output power can fluctuate significantly according to the operating conditions, which makes stable harvest of energy difficult. This paper presents an MFC energy harvesting scheme using a hysteresis controller and two layers of DC/DC converters. The proposed energy harvesting system can capture the energy from multiple MFCs at individually controlled operating point and at the same time form the energy into a usable shape.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:27 ,  Issue: 3 )