By Topic

A Hybrid Approach to Private Record Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Real-world entities are not always represented by the same set of features in different data sets. Therefore, matching records of the same real-world entity distributed across these data sets is a challenging task. If the data sets contain private information, the problem becomes even more difficult. Existing solutions to this problem generally follow two approaches: sanitization techniques and cryptographic techniques. We propose a hybrid technique that combines these two approaches and enables users to trade off between privacy, accuracy, and cost. Our main contribution is the use of a blocking phase that operates over sanitized data to filter out in a privacy-preserving manner pairs of records that do not satisfy the matching condition. We also provide a formal definition of privacy and prove that the participants of our protocols learn nothing other than their share of the result and what can be inferred from their share of the result, their input and sanitized views of the input data sets (which are considered public information). Our method incurs considerably lower costs than cryptographic techniques and yields significantly more accurate matching results compared to sanitization techniques, even when privacy requirements are high.

Published in:

IEEE Transactions on Dependable and Secure Computing  (Volume:9 ,  Issue: 5 )