By Topic

Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Panagopoulos, A. ; Dept. of Comput. Sci., Stony Brook Univ., Stony Brook, NY, USA ; Chaohui Wang ; Samaras, D. ; Paragios, N.

The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize this information in a novel framework in order to jointly recover the illumination environment, a set of geometry parameters, and an estimate of the cast shadows in the scene given a single image and coarse initial 3D geometry. We model the interaction of illumination and geometry in the scene and associate it with image evidence for cast shadows using a higher order Markov Random Field (MRF) illumination model, while we also introduce a method to obtain approximate image evidence for cast shadows. Capturing the interaction between light sources and geometry in the proposed graphical model necessitates higher order cliques and continuous-valued variables, which make inference challenging. Taking advantage of domain knowledge, we provide a two-stage minimization technique for the MRF energy of our model. We evaluate our method in different datasets, both synthetic and real. Our model is robust to rough knowledge of geometry and inaccurate initial shadow estimates, allowing a generic coarse 3D model to represent a whole class of objects for the task of illumination estimation, or the estimation of geometry parameters to refine our initial knowledge of scene geometry, simultaneously with illumination estimation.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 2 )