By Topic

Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azzopardi, G. ; Johann Bernoulli Inst. for Math. & Comput. Sci., Univ. of Groningen, Groningen, Netherlands ; Petkov, N.

Background: Keypoint detection is important for many computer vision applications. Existing methods suffer from insufficient selectivity regarding the shape properties of features and are vulnerable to contrast variations and to the presence of noise or texture. Methods: We propose a trainable filter which we call Combination Of Shifted FIlter REsponses (COSFIRE) and use for keypoint detection and pattern recognition. It is automatically configured to be selective for a local contour pattern specified by an example. The configuration comprises selecting given channels of a bank of Gabor filters and determining certain blur and shift parameters. A COSFIRE filter response is computed as the weighted geometric mean of the blurred and shifted responses of the selected Gabor filters. It shares similar properties with some shape-selective neurons in visual cortex, which provided inspiration for this work. Results: We demonstrate the effectiveness of the proposed filters in three applications: the detection of retinal vascular bifurcations (DRIVE dataset: 98.50 percent recall, 96.09 percent precision), the recognition of handwritten digits (MNIST dataset: 99.48 percent correct classification), and the detection and recognition of traffic signs in complex scenes (100 percent recall and precision). Conclusions: The proposed COSFIRE filters are conceptually simple and easy to implement. They are versatile keypoint detectors and are highly effective in practical computer vision applications.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 2 )