By Topic

Towards Automated Anomaly Report Assignment in Large Complex Systems Using Stacked Generalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jonsson, L. ; Ericsson AB, Stockholm, Sweden ; Broman, D. ; Sandahl, K. ; Eldh, S.

Maintenance costs can be substantial for organizations with very large and complex software systems. This paper describes research for reducing anomaly report turnaround time which, if successful, would contribute to reducing maintenance costs and at the same time maintaining a good customer perception. Specifically, we are addressing the problem of the manual, laborious, and inaccurate process of assigning anomaly reports to the correct design teams. In large organizations with complex systems this is particularly problematic because the receiver of the anomaly report from customer may not have detailed knowledge of the whole system. As a consequence, anomaly reports may be wrongly routed around in the organization causing delays and unnecessary work. We have developed and validated machine learning approach, based on stacked generalization, to automatically route anomaly reports to the correct design teams in the organization. A research prototype has been implemented and evaluated on roughly one year of real anomaly reports on a large and complex system at Ericsson AB. The prediction accuracy of the automation is approaching that of humans, indicating that the anomaly report handling time could be significantly reduced by using our approach.

Published in:

Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on

Date of Conference:

17-21 April 2012