By Topic

Image denoising by random walk with restart kernel and non-subsampled contourlet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. Liu ; College of Communication Engineering, Chongqing University, Chongqing 400030, People's Republic of China ; X. Zeng ; Y. Liu

To address the drawbacks of continuous partial differential equations, a diffusion method based on spectral graph theory and random walk with restart kernel is proposed, which uses non-subsampled contourlet transform to capture the geometric feature of image. Specifically, a new graph weighting function is constructed based on the geometric feature. Moreover, a second-order random walk with restart kernel was generated. The derivation shows that the proposed method is equivalent to the denoising methods based on partial differential equations. The simulation results demonstrate that the proposed method can effectively reduce Gaussian noise and preserve image edge with superior performance compared with other graph-based partial differential equation methods.

Published in:

IET Signal Processing  (Volume:6 ,  Issue: 2 )