By Topic

Achieving Efficient Flooding by Utilizing Link Correlation in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ting Zhu ; Dept. of Comput. Sci., Binghamton Univ., Binghamton, NY, USA ; Ziguo Zhong ; Tian He ; Zhi-Li Zhang

Although existing flooding protocols can provide efficient and reliable communication in wireless sensor networks on some level, further performance improvement has been hampered by the assumption of link independence, which requires costly acknowledgments (ACKs) from every receiver. In this paper, we present collective flooding (CF), which exploits the link correlation to achieve flooding reliability using the concept of collective ACKs. CF requires only 1-hop information at each node, making the design highly distributed and scalable with low complexity. We evaluate CF extensively in real-world settings, using three different types of testbeds: a single-hop network with 20 MICAz nodes, a multihop network with 37 nodes, and a linear outdoor network with 48 nodes along a 326-m-long bridge. System evaluation and extensive simulation show that CF achieves the same reliability as state-of-the-art solutions while reducing the total number of packet transmission and the dissemination delay by 30%-50% and 35%-50%, respectively.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 1 )