By Topic

A novel measure of fingerprint image quality using Principal Component Analysis(PCA)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xunqiang Tao ; Inst. of Autom., Beijing, China ; Xin Yang ; Yali Zang ; Xiaofei Jia
more authors

The performance of automatic fingerprint identification system relies heavily on the quality of the fingerprint images. Poor quality images result in missing or spurious features, thus degrading the performance of the identification system. Therefore, it is important for a fingerprint identification system to estimate the quality of the captured fingerprint images. In this paper, a new method based on Principal Component Analysis (PCA) is proposed for fingerprint quality measure. PCA is a common and useful statistical technique for finding patterns in data of high dimension. It can be found that fingerprint patches in a local neighborhood form a simple and regular circular manifold topology in a high-dimensional space. The characterization of manifold topology represents the local properties of the fingerprint. In our method, we first extract two novel features from the expected manifold topology. Then a local block measure of quality is generated according to these two features using multiplication rules. Finally, incorporating the normalized Harris-corner strength (HCS) as weighted value into local block quality measure, we obtain a global quality of a fingerprint image. The proposed method has been evaluated on the databases of fingerprint verification competition 2004DB1 (FVC2004) and our private database(AES2501). The experimental results confirm that the proposed algorithm is simple and effective for fingerprint image quality measure.

Published in:

Biometrics (ICB), 2012 5th IAPR International Conference on
Biometrics Compendium, IEEE

Date of Conference:

March 29 2012-April 1 2012