Cart (Loading....) | Create Account
Close category search window
 

Multilayer Architectures for Facial Action Unit Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tingfan Wu ; Machine Perception Lab., Univ. of California San Diego, La Jolla, CA, USA ; Butko, N.J. ; Ruvolo, P. ; Whitehill, J.
more authors

In expression recognition and many other computer vision applications, the recognition performance is greatly improved by adding a layer of nonlinear texture filters between the raw input pixels and the classifier. The function of this layer is typically known as feature extraction. Popular filter types for this layer are Gabor energy filters (GEFs) and local binary patterns (LBPs). Recent work [1] suggests that adding a second layer of nonlinear filters on top of the first layer may be beneficial. However, it is unclear what is the best architecture of layers and selection of filters. In this paper, we present a thorough empirical analysis of the performance of single-layer and dual-layer texture-based approaches for action unit recognition. For the single hidden layer case, GEFs perform consistently better than LBPs, which may be due to their robustness to jitter and illumination noise as well as to their ability to encode texture at multiple resolutions. For dual-layer case, we confirm that, while small, the benefit of adding this second layer is reliable and consistent across data sets. Interestingly for this second layer, LBPs appear to perform better than GEFs.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:42 ,  Issue: 4 )
Biometrics Compendium, IEEE

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.