By Topic

Large Margin Gaussian Mixture Models with Differential Privacy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pathak, M.A. ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Raj, B.

As increasing amounts of sensitive personal information is aggregated into data repositories, it has become important to develop mechanisms for processing the data without revealing information about individual data instances. The differential privacy model provides a framework for the development and theoretical analysis of such mechanisms. In this paper, we propose an algorithm for learning a discriminatively trained multiclass Gaussian mixture model-based classifier that preserves differential privacy using a large margin loss function with a perturbed regularization term. We present a theoretical upper bound on the excess risk of the classifier introduced by the perturbation.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:9 ,  Issue: 4 )