By Topic

Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vincent Roberge ; Electrical and Computer Engineering Department, Royal Military College of Canada, Kingston, Canada ; Mohammed Tarbouchi ; Gilles Labonte

The development of autonomous unmanned aerial vehicles (UAVs) is of high interest to many governmental and military organizations around the world. An essential aspect of UAV autonomy is the ability for automatic path planning. In this paper, we use the genetic algorithm (GA) and the particle swarm optimization algorithm (PSO) to cope with the complexity of the problem and compute feasible and quasi-optimal trajectories for fixed wing UAVs in a complex 3D environment, while considering the dynamic properties of the vehicle. The characteristics of the optimal path are represented in the form of a multiobjective cost function that we developed. The paths produced are composed of line segments, circular arcs and vertical helices. We reduce the execution time of our solutions by using the “single-program, multiple-data” parallel programming paradigm and we achieve real-time performance on standard commercial off-the-shelf multicore CPUs. After achieving a quasi-linear speedup of 7.3 on 8 cores and an execution time of 10 s for both algorithms, we conclude that by using a parallel implementation on standard multicore CPUs, real-time path planning for UAVs is possible. Moreover, our rigorous comparison of the two algorithms shows, with statistical significance, that the GA produces superior trajectories to the PSO.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:9 ,  Issue: 1 )