By Topic

A 5.79-Gb/s Energy-Efficient Multirate LDPC Codec Chip for IEEE 802.15.3c Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shao-Wei Yen ; Dept. of Electron. Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Shiang-Yu Hung ; Chih-Lung Chen ; Chang, Hsie-Chia
more authors

An LDPC codec chip supporting four code rates of IEEE 802.15.3c applications is presented. After utilizing row-based layered scheduling, the normalized min-sum (NMS) algorithm can reduce half of the iteration number while maintaining similar performance. According to the unique code structure of the parity-check matrix, a reconfigurable 8/16/32-input sorter is designed to deal with LDPC codes in four different code rates. Both sorter input reallocation and pre-coded routing switch are proposed to alleviate routing complexity, leading to 64% input reduction of multiplexers. In addition, an adder-accumulator-shift register (AASR) circuit is proposed for the LDPC encoder to reduce hardware complexity. After implemented in 65-nm 1P10M CMOS process, the proposed LDPC decoder chip can achieve maximum 5.79-Gb/s throughput with the hardware efficiency of 3.7 Gb/s/mm2 and energy efficiency of 62.4 pJ/b, respectively.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 9 )