By Topic

Simulation of laser phenomenon of cholesteric liquid crystal using axuillary differential equation finite-difference time-domain method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chun-Hong Lee ; Dept. of Photonics, Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Hung-Chang Jau ; Shih-Hui Chang ; Tsung-Hsien Lin

We demonstrate the lasing effect in cholesteric liquid crystal using an auxiliary differential equation finite-difference time-domain method. The transmission spectrum and laser phenomenon in cholesteric liquid crystal without and with gain medium are presented. The solver combines with four level electron system, classical electron oscillator model and Maxwell's equations. In this solver, the wavelength of emission is agreed with that of band edge of cholesteric liquid crystal. We also analyze the lasing property at different pitches and pumping rates. Threshold value can also be determined from different pumping rates.

Published in:

Wireless and Optical Communications Conference (WOCC), 2012 21st Annual

Date of Conference:

19-21 April 2012