By Topic

HVDC SuperGrids with modular multilevel converters — The power transmission backbone of the future

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ahmed, Noman ; Electr. Energy Conversion (E2C), KTH R. Inst. of Technol., Stockholm, Sweden ; Norrga, Staffan ; Nee, H.-P. ; Haider, A.
more authors

In order to transmit massive amounts of power generated by remotely located power plants, especially offshore wind farms, and to balance the intermittent nature of renewable energy sources, the need for a stronger high voltage transmission grid is anticipated. Due to limitations in ac power transmission the most likable choice for such a grid is a high-voltage dc (HVDC) grid. However, the concept of the HVDC grid is still under active development as different technical challenges exist, and it is not yet possible to construct such a dc grid. This paper deals with prospects and technical challenges for future HVDC SuperGrids. Different topologies for a SuperGrid and the possibility to use modular multilevel converters (M2Cs) are presented. A comprehensive overview of different submodule implementations of M2C is given as well as a discussion on the choice between cables or overhead lines, the protection system for the dc grid and dc-side resonance issues.

Published in:

Systems, Signals and Devices (SSD), 2012 9th International Multi-Conference on

Date of Conference:

20-23 March 2012