Cart (Loading....) | Create Account
Close category search window
 

A Triple-Mode Balanced Linear CMOS Power Amplifier Using a Switched-Quadrature Coupler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hamhee Jeon ; RF Micro Devices (RFMD), Torrance, CA, USA ; Yunseo Park ; Yan-Yu Huang ; Jihwan Kim
more authors

A triple-mode class-AB balanced linear power amplifier (PA) is realized in standard 0.18-μm CMOS technology. For the average efficiency enhancement, the triple-mode operation realizes a switched-quadrature coupler with a balanced topology to achieve robust load insensitivity. The PA and RF switches uniquely utilize the isolation port of the switched-quadrature coupler as a signal path in a low-power (LP) mode of operation, and the incorporated output matching network satisfies the |Γ| = 1 condition from the quadrature coupler in the LP mode while providing the necessary load-pull impedance from the PA output side in the high-power (HP) mode. To obtain low loss and high quality factor ( Q) of the passive output-combining network, a transformer-based quadrature coupler is implemented using a silicon-based integrated passive device process. With a 3.4-V power supply, the PA transmits a maximum output power of 28.4 dBm with 40.7% of power-added efficiency (PAE) and linear output power up to 26.6 dBm with 35% of the PAE using a 3-GPP WCDMA modulated signal. With the triple-mode operation, a PAE at 16 dBm is enhanced from 11.1% to 17%, and 47 mA of quiescent current is saved. The PA also shows robust operation under 2.5:1 of VSWR condition, achieving 1 dB of the gain variation and less than 3.9 dB of ACLR variation. This work demonstrates the potential of a highly efficient CMOS PA for WCDMA applications.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 9 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.