By Topic

Uncertainty Analysis of Ventricular Mechanics Using the Probabilistic Collocation Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Osnes, H. ; Dept. of Math., Univ. of Oslo, Oslo, Norway ; Sundnes, J.

Uncertainty and variability in material parameters are fundamental challenges in computational biomechanics. Analyzing and quantifying the resulting uncertainty in computed results with parameter sweeps or Monte Carlo methods has become very computationally demanding. In this paper, we consider a stochastic method named the probabilistic collocation method, and investigate its applicability for uncertainty analysis in computing the passive mechanical behavior of the left ventricle. Specifically, we study the effect of uncertainties in material input parameters upon response properties such as the increase in cavity volume, the elongation of the ventricle, the increase in inner radius, the decrease in wall thickness, and the rotation at apex. The numerical simulations conducted herein indicate that the method is well suited for the problem of consideration, and is far more efficient than the Monte Carlo simulation method for obtaining a detailed uncertainty quantification. The numerical experiments also give interesting indications on which material parameters are most critical for accurately determining various global responses.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 8 )