Cart (Loading....) | Create Account
Close category search window
 

Fault Resilient Real-Time Design for NoC Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zimmer, C. ; Dept. of Comput. Sci., North Carolina State Univ., Raleigh, NC, USA ; Mueller, F.

Performance and time to market requirements cause many real-time designers to consider components, off the shelf (COTS) for real-time cyber-physical systems. Massive multi-core embedded processors with network-on-chip (NoC) designs to facilitate core-to-core communication are becoming common in COTS. These architectures benefit real-time scheduling, but they also pose predictability challenges. In this work, we develop a framework for Fault Observant and Correcting Real-Time Embedded design (Forte) that utilizes massive multi-core NoC designs to reduce overhead by up to an order of magnitude and to lower jitter in systems via utilizing message passing instead of shared memory as the means for intra-processor communication. Message passing, which is shown to improve the overall scalability of the system, is utilized as the basis for replication and task rejuvenation. This improves fault resilience by orders of magnitude. To our knowledge, this work is the first to systematically map real-time tasks onto massive multi-core processors with support for fault tolerance that considers NoC effects on scalability on an real hardware platform and not just in simulation.

Published in:

Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on

Date of Conference:

17-19 April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.