By Topic

Subcell dispersive finite-difference time-domain schemes for infinite graphene-based structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bouzianas, G.D. ; Dept. of Electr. & Comput. Eng., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece ; Kantartzis, N.V. ; Tsiboukis, T.D.

A systematic three-dimensional (3D) frequency-dependent finite-difference time-domain technique for the consistent and rigorous analysis of infinite graphene layers is developed in this study. The generalised formulation divides the overall geometry into unit cells and applies the appropriate Floquet periodic boundary conditions to their lateral surfaces. In this framework, the infinite graphene sheet is carefully manipulated by means of an efficient subcell discretisation concept along with a complex surface conductivity representation defined by quantum mechanical equations. This conductivity model is, subsequently, converted to its volume counterpart to allow realistic time-domain investigations, while the dispersive nature of graphene is described via an auxiliary differential equation algorithm. Furthermore, a set of linearly polarised normally incident wideband pulses or obliquely incident monochromatic waves excite the computational domain based on a properly modified total-field/scattered-field scheme. Numerical simulations, involving an assortment of multilayer arrangements, reveal the promising accuracy and stability of the proposed method through detailed comparisons with data from analytical closed-form expressions.

Published in:

Microwaves, Antennas & Propagation, IET  (Volume:6 ,  Issue: 4 )