By Topic

Dynamic displacement sensing, system identification, and control of a speaker-based tendon vibrator via accelerometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Celik, O. ; Dept. of Mech. Eng. & Mater. Sci., Rice Univ., Houston, TX, USA ; Gilbert, H.B. ; O'Malley, M.K.

In this paper, we develop a speaker-based tendon vibrator capable of applying vibrations with sustained amplitudes and desired time-frequency profiles to be used in inducing kinesthetic illusions. For modeling and control of the tendon vibrator, we propose and experimentally validate a method for real-time dynamic displacement sensing based on accelerometers. We tested the accuracy of displacement measurements by comparing the movements of the vibrator measured with differential accelerometers to those measured by a high resolution optical encoder. We completed frequency domain system identification of the vibrator and obtained a parametric transfer function model via displacements sensed by the encoder and by analog and digital integration. We show that within the frequency range of interest 20 -100 Hz, analog and digital integration methods were successful in capturing an accurate model of the vibrator. Under feedforward control, developed tendon vibrator is able to generate sustained 2-mm peak-to-peak vibrations throughout the frequency range of interest.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:18 ,  Issue: 2 )