By Topic

Estimating the Uncertainty of Terrestrial Laser Scanner Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

At present, several papers discuss the accuracy and precision of terrestrial laser scanners (TLSs), but the research continues to focus on the behavior of the TLSs. The purpose of this paper is to propose a method to evaluate the uncertainty of a TLS (FARO Photon 80). A rigid and transportable aluminum structure with 28 black-and-white targets was designed for this purpose. The structure was scanned 12 times at several distances from 2 to 70 m, and the x, y, and z coordinates of the center of the targets were automatically identified. Data were analyzed by means of circular and spherical statistics using R modules programmed in our research group. Analysis reveals that 3-D spatial distribution has a stratified pattern in the Z-axis. Regardless of the scanner status, these results indicate that these analyses should be performed periodically because they can have an impact on some studies. The proposed methodology is robust and simple and can be performed with free software such as the R modules used in this work.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 11 )