By Topic

Variable-Width Channel Allocation for Access Points: A Game-Theoretic Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Yuan ; Dept. of Electron. & Inf. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Ping Wang ; Wei Liu ; Wenqing Cheng

Channel allocation is a crucial concern in variable-width wireless local area networks. This work aims to obtain the stable and fair nonoverlapped variable-width channel allocation for selfish access points (APs). In the scenario of single collision domain, the channel allocation problem reduces to a channel-width allocation problem, which can be formulated as a noncooperative game. The Nash equilibrium (NE) of the game corresponds to a desired channel-width allocation. A distributed algorithm is developed to achieve the NE channel-width allocation that globally maximizes the network utility. A punishment-based cooperation self-enforcement mechanism is further proposed to ensure that the APs obey the proposed scheme. In the scenario of multiple collision domains, the channel allocation problem is formulated as a constrained game. Penalty functions are introduced to relax the constraints and the game is converted into a generalized ordinal potential game. Based on the best response and randomized escape, a distributed iterative algorithm is designed to achieve a desired NE channel allocation. Finally, computer simulations are conducted to validate the effectiveness and practicality of the proposed schemes.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:12 ,  Issue: 7 )